Tags:
Node Thumbnail

Andrew Ng ออกจาก Baidu ตั้งแต่เดือนมีนาคมที่ผ่านมาและประกาศเมื่อกลางปีว่าจะกลับมาทำโครงการ deeplearning.ai โดยไม่ได้บอกว่าเป็นโครงการอะไร ตอนนี้โครงการแรกของ deeplearning.ai ก็เปิดตัวแล้ว เป็นวิชา "Deep Learning Specialization" บน Coursera

วิชานี้ใช้ Python และ TensorFlow เป็นเครื่องมือหลักเรียนตั้งแต่ส่วนประกอบพื้นฐานของ deep learning ได้แก่ convolutional network, RNN, LSTM, Adam, dropout, BatchNorm, Xavier/He initialization ศัพท์เหล่านี้มันเป็นส่วนประกอบที่พบได้บ่อยๆ ในงานวิจัย deep learning ช่วงหลังโดยมีการปรับขนาดพารามิเตอร์ต่างๆ และสถาปัตยกรรมของเครือข่ายต่างกันไป

Tags:

ทีมวิจัยจาก MIT ตีพิมพ์งานวิจัย DeepMoji ที่สามารถวิเคราะห์อารมณ์ของคำพูดต่างๆ ได้อย่างแม่นยำ ด้วยการสร้างฐานข้อมูลจากทวีต 1,200 ล้านรายการ (กรองจากที่สะสมไว้ 55,000 ล้านทวีต) ทีมวิจัยพบว่าข้อมูลการใช้อิโมจิแสดงอารมณ์ของคำพูดได้เป็นอย่างดี โดยสามารถแบ่งกลุ่มอารมณ์ของอิโมจิ 64 ภาพยอดนิยมออกเป็นกลุ่มๆ แล้วแยกทวีตที่มีอีโมจิภาพละหมื่นทวีตเอาไว้เป็นข้อมูลทดสอบ

โมเดลของ DeepMoji แบ่งออกเป็น 5 ชั้น embedding, BiLSM สองชั้น, Attention, และปิดด้วย Softmax เทคนิคการฝึกทีมงานเสนอเทคนิค chain-thaw ที่หยุดบางชั้นเอาไว้เพื่อฝึกทีละชั้นไปเรื่อยๆ แล้วค่อยฝึกทุกชั้นพร้อมกันในรอบสุดท้าย

Tags:
Node Thumbnail

เมื่อวันอาทิตย์ที่ 6 สิงหาคมที่ผ่านมาทางหน้าเพจ PyTorch ใน Facebook ได้ประกาศการอัพเดท PyTorch เวอร์ชัน 0.2

ก่อนเข้าเนื้อหา อยากแนะนำ PyTorch ให้ทุกคนรู้จักซักนิด

PyTorch เป็น Deep Learning Library ซึ่ง Facebook พัฒนาบนภาษา Python (เมื่อก่อนอยู่บนภาษา Lua) จุดเด่นอยู่ที่การทำ Dynamic Computation และระบบการหาอนุพันธ์แบบ Automatic Differentiation นอกจากนี้ยังเป็นไลบรารีที่เป็นระบบ Define by run (ไม่ต้องเปิด-ปิด Session เพื่อการรัน) ปัจจุบันรองรับระบบปฏิบัติการ Linux และ macOS เท่านั้น

การอัพเดทที่สำคัญมีดังนี้

1.การ Broadcasting ของ Tensor โดยฟังก์ชันนี้หลายคนจะคุ้นเคยใน Numpy Array

Tags:
Node Thumbnail

ปกติแล้วการทำใบหน้าขณะพูดของตัวละครในเกมหรือภาพยนตร์ CG ให้ดูเหมือนมนุษย์ จะต้องใช้ต้นแบบเป็นวิดีโอของนักแสดงที่เป็นคนจริงๆ มาผ่านซอฟต์แวร์แปลงใบหน้า แล้วค่อยให้ฝ่ายศิลป์ตรวจสอบและแก้ไขอีกครั้ง ซึ่งกระบวนการทั้งหมดสิ้นเปลืองเวลามาก

งานวิจัยล่าสุดของ NVIDIA ที่โชว์ในงาน SIGGRAPH นำเทคนิค deep learning มาช่วยแก้ปัญหา ให้แปลงวิดีโอคนจริงมาเป็นโมเดล 3D ได้รวดเร็วและแม่นยำขึ้น โดยใช้ข้อมูลเพื่อเทรนเป็นวิดีโอยาวแค่ 5 นาทีเท่านั้น

เท่านั้นยังไม่พอ ทีมวิจัยของ NVIDIA ยังสามารถสร้างโมเดลใบหน้า 3D โดยไม่ต้องใช้ภาพวิดีโอ แต่ใช้แค่เสียงพูดเท่านั้น วิธีการคือนำกราฟคลื่นเสียงมาโยงกับจุดขยับต่างๆ ของโมเดลใบหน้า เพื่อให้ใบหน้าขยับตามเสียงได้

Tags:
Node Thumbnail

เมื่อไม่กี่วันก่อน เราเพิ่งเห็นข่าว นักวิจัยใช้ AI สร้างมัลแวร์ที่หลบแอนตี้ไวรัสได้แล้ว ในงานสัมมนา Black Hat ที่จัดในช่วงเดียวกัน ผู้พัฒนาซอฟต์แวร์แอนตี้ไวรัสก็ประกาศนำเทคนิค AI มาใช้ตรวจจับมัลแวร์ด้วยเช่นกัน

McAfee ประกาศว่า McAfee Advanced Threat Defense (ATD) เวอร์ชันใหม่ 4.0 นำเทคนิค deep learning มาช่วยวิเคราะห์พฤติกรรมของมัลแวร์ที่ฝังตัวมากับอีเมลแล้ว ช่วยให้การตรวจจับมัลแวร์มีประสิทธิภาพมากขึ้น

Tags:
Node Thumbnail

ยุคสมัยของการประมวลผล deep learning บนสมาร์ทโฟนกำลังจะเริ่มต้นขึ้น ช่วงต้นปีเราเห็นข่าว TensorFlow Lite ใน Android O กันไปแล้ว ฝั่งของผู้ผลิตฮาร์ดแวร์ก็เริ่มขยับตัวตาม

Qualcomm ออกมาประกาศเปิดชุดซอฟต์แวร์ประมวลผล AI ชื่อ Neural Processing Engine (NPE) ที่ใช้เร่งความเร็วประมวลผล deep learning บนหน่วยประมวลผล Snapdragon รุ่นใหม่ๆ ให้นักพัฒนาดาวน์โหลดไปใช้กันแล้ว

ชุดซอฟต์แวร์ NPE จะช่วยให้การรันโมเดลจากเฟรมเวิร์คยอดนิยม (รองรับ Caffe, Caffe2, TensorFlow) บนหน่วยประมวลผลของ Qualcomm มีประสิทธิภาพมากขึ้น ด้วยการแบ่งโหลดจากซีพียูไปยังจีพียู (Adreno) และหน่วยประมวลผลสัญญาณ Hexagon DSP

Tags:
Node Thumbnail

ถึงแม้ HoloLens รุ่นใหม่ยังไม่น่าจะมาเร็วๆ นี้ แต่ทางไมโครซอฟท์ได้ออกมาเปิดเผยรายละเอียดของ HoloLens รุ่นใหม่คร่าวๆ แล้วว่าจะมาพร้อมกับชิปประมวลผล Deep Learning โดยเฉพาะ ซึ่งก็ดูสอดคล้องกับวิสัยทัศน์ Intelligent Cloud, Intelligent Edge ของซีอีโอเองด้วย

สำหรับหน่วยประมวลผลดังกล่าว ทางไมโครซอฟท์จะเป็นคนออกแบบซิลิคอนเอง เพื่อให้รองรับการทำงานของ Deep Neural Network ผ่านแว่น Mixed Reality ได้อย่างมีประสิทธิภาพและใช้แบตเตอรี่น้อยที่สุด โดยชิปตัวนี้จะฝังอยู่ใน HPU 2.0 (Holographic Processing Unit) หน่วยประมวลผลรุ่นใหม่ของ HoloLens ที่กำลังอยู่ระหว่างการพัฒนา

Tags:

คุณศุภศรณ์ สุวจนกรณ์ จากห้องวิจัย GRAIL นำเสนองานวิจัยในการสร้างวิดีโอของบารัก โอบามา ตามเสียงที่ใส่เข้าไปได้อย่างสมจริง โดยอาศัยข้อมูลเสียงนำมาสร้างเป็นรูปแบบของปากแล้วจึงใส่รายละเอียดลงไปก่อนจะนำภาพปากเคลื่อนไหวนี้ไปใส่วิดีโอเป้าหมาย

งานวิจัยนี้ทำให้สามารถนำเสียงของโอบามาเองมาสร้างภาพวิดีโอใหม่ โดยไม่ต้องอาศัยวิดีโอของการพูดครั้งนั้นจริงๆ แม้แต่เสียงที่สร้างขึ้นมา เช่น เสียงของคนที่เลียนแบบโอบามา หรือเสียงของโอบามาที่ถูกตัดต่อ

Tags:
Node Thumbnail

ทีมวิจัยของกูเกิล พัฒนาระบบ AI ด้วยเทคนิค deep learning โดยให้เรียนรู้กระบวนการทำงานของช่างภาพระดับมืออาชีพ

ระบบ AI ของกูเกิลศึกษาภาพถ่ายพานอรามาของสถานที่ท่องเที่ยวตามธรรมชาติชื่อดังทั่วโลกจาก Google Street View กว่า 40,000 ภาพ แล้วดูว่าแต่ละภาพมีแง่มุมด้านความสวยงามอย่างไรบ้าง เช่น การจัดวางภาพ ระดับของแสง (HDR) และความอิ่มสี (saturation) จากนั้นก็นำโมเดลที่ได้มา "ต่อภาพ" จาก Street View แล้วแต่งภาพให้ออกมาสวยงามราวกับช่างภาพมืออาชีพ

Tags:
Node Thumbnail

งานวิจัยด้านคอมพิวเตอร์เรียนรู้ด้วยตัวเอง (machine learning) ถูกกระแส deep learning กลบแนวทางอื่นแทบทั้งหมด เพราะคนจำนวนมากค้นพบว่าหากข้อมูลมากพอ โมเดล deep learning นั้นสามารถเรียนรู้ได้มากขึ้นเรื่อย ความแม่นยำจะสูงขึ้นเรื่อยๆ ตามปริมาณข้อมูล แต่ในวงการวิจัย ชุดข้อมูลกลับไม่เติบโตขึ้นเท่าใดนัก ชุดข้อมูลภาพ ImageNet จำนวน 1 ล้านภาพใช้งานมาตั้งแต่ปี 2011 แม้ว่าโมเดล deep learning จะซับซ้อนขึ้นอย่างมากในช่วง 5 ปีที่ผ่านมา

Tags:
Node Thumbnail

Andrew Ng ผู้บุกเบิกวงการ deep learning เพิ่งประกาศลาออกจาก Baidu เมื่อเดือนมีนาคม ล่าสุดเมื่อสัปดาห์ก่อนเขาทวีตเปิดตัวโครงการใหม่ชื่อ deeplearning.ai แล้ว

ตอนนี้ยังไม่มีข้อมูลแน่ชัดว่า deeplearning.ai เป็นองค์กรประเภทไหน (Ng ใช้คำว่า project ไม่ใช่ company) และมีภารกิจด้านใด ในหน้าเว็บไซต์ของ deeplearning.ai ก็บอกเพียงว่าจะเปิดตัวอย่างเป็นทางการในเดือนสิงหาคมนี้

โดเมนเนม deeplearning.ai มี Andrew Ng เป็นผู้จดทะเบียน แต่ใช้ที่อยู่เป็นของ Baidu ซึ่งโฆษกของ Baidu ก็ออกมาชี้แจงในภายหลังว่าบริษัทไม่มีความเกี่ยวข้องกับโครงการนี้

Tags:
Node Thumbnail

NVIDIA มีซอฟต์แวร์ชื่อ TensorRT สำหรับรีดประสิทธิภาพ (optimization) ของการรันโมเดล deep learning ที่พัฒนามาได้สักระยะหนึ่งแล้ว ล่าสุด NVIDIA เปิดให้นักพัฒนาสามารถดาวน์โหลด TensorRT 2.0 ไปใช้งานกัน

ปกติแล้วในโลกของ AI เราแยกงานของการเทรนหรือสร้างโมเดล (training) และการนำโมเดลไปใช้งาน (interference) ออกจากกัน

แนวคิดของ TensorRT คือการรีดประสิทธิภาพในตอนรัน (RT = runtime) ให้มีประสิทธิภาพสูงสุด มันออกแบบมาสำหรับปรับแต่งประสิทธิภาพก่อน เพื่อตอนรันงานจริง (production) จะได้ใช้งานทรัพยากรเครื่องอย่างคุ้มค่าที่สุด (เทคนิคจะคล้ายกับการแปลง bytecode ของ Java หรือการคอมไพล์แบบ ahead-of-time)

Tags:
Node Thumbnail

คุณรักพงษ์ กิตตินราดร และคุณกรกฎ เชาวะวณิช Data Scientist จาก True Corporation เปิดซอร์สโครงการ deepcut ระบบตัดคำแบบ deep learning โดยพัฒนาด้วย Keras

ข้อมูลที่ใช้เทรนเป็นชุดข้อมูล BEST ของ NECTEC โดยแบ่งข้อมูลสำหรับฝึก 90% และข้อมูลสำหรับทดสอบอีก 10% โมเดลพยายามระบุว่าแต่ละตัวอักษรเป็นจุดเริ่มต้นของคำหรือไม่ (ตามโค้ดคือค่ามากกว่า 0.5) โดยเมื่อทดสอบกับข้อมูลทดสอบได้ความแม่นยำ f1 score 98.8%, precision score 98.6%, และ recall score 99.1%

Tags:
Node Thumbnail

กูเกิลปล่อยโครงการ Tensor2Tensor (T2T) ชุดเครื่องมือสำหรับช่วยแยกปัญหาออกจากการออกแบบโมเดล deep learning ทำให้สามารถทดลองปัญหาเดิมกับโมเดลใหม่ๆ ได้มากขึ้น ช่วยให้นักวิจัยสามารถออกแบบโมเดลได้อย่างมีประสิทธิภาพ พร้อมกับสาธิตการใช้งานด้วยรายงานวิจัย MultiModel โมเดล deep learning ที่ทำงานหลายอย่างได้พร้อมกัน ได้แก่ บรรยายภาพ, จัดหมวดหมู่ภาพ, แปลภาษา, แปลงเสียงเป็นข้อความ, และวิเคราะห์โครงสร้างประโยค

MultiModel เป็นโมเดล deep learning ที่มีความซับซ้อนสูง มีกระบวนการเข้ารหัสข้อมูลและถอดรหัสเอาผลลัพธ์ได้หลายทางตามงานประเภทต่างๆ โดยยังสามารถทำงานประเภทต่างๆ ได้ความแม่นยำในระดับดีพอใช้ แถมการฝึกปัญหาหลายอย่างไปพร้อมกันกลับเพิ่มความแม่นยำในงานประเภทต่างๆ ได้

Tags:
Node Thumbnail

ไมโครซอฟท์มีชุดพัฒนา deep learning ของตัวเองชื่อ CNTK ที่ออกมาตั้งแต่เดือนมกราคม 2016 ล่าสุดไมโครซอฟท์อัพเกรดเป็นเวอร์ชัน 2.0 พร้อมเปลี่ยนชื่อมาใช้ชื่อเต็ม Microsoft Cognition Toolkit แทนชื่อย่อแล้ว

การเปลี่ยนแปลงสำคัญของเวอร์ชัน 2.0 คือการรองรับ Keras ไลบรารีด้าน neural network ยอดนิยมอีกตัวหนึ่ง (Keras เป็นของกูเกิล โดยอีกทีมที่แยกจาก TensorFlow และทำงานได้บนเฟรมเวิร์คหลายตัว เช่น TensorFlow, Theano และล่าสุดคือ CNTK 2.0 ที่ตอนนี้ยังมีสถานะเป็นรุ่นพรีวิว)

Tags:
Node Thumbnail

อินเทลเปิดตัวการ์ด Intel DLIA (Deep Learning Inference Accelerator) ที่ใช้ชิป Arria 10 ตามแผนการที่ประกาศไว้ตั้งแต่ปีที่แล้ว โดยมีจุดขายที่เป็นการ์ดเร่งความเร็วที่มาพร้อมกับงานปัญญาประดิษฐ์พร้อมใช้บางส่วน

ตามสเปคของอินเทล พลังประมวลผลของ DLIA ไม่สูงนัก อยู่ที่ 1.5 TFLOPS เท่านั้น (ไม่บอก precision แต่เทียบกับ Tesla P100 ที่รันได้ 5 TFLOPS ที่ double-precision แล้วก็ยังห่างกันอยู่ดี)

Node Thumbnail

ในคีย์โน้ตงาน Google I/O 2017 เมื่อสัปดาห์ที่ผ่านมา ธีมหลักของงานนั้นชัดเจนมากว่าเป็นเรื่องของ AI ที่มีความสำคัญเหนือทุกสิ่งอย่าง (Android และ VR ถูกนำไปพูดช่วงท้ายๆ และแทบไม่พูดถึงบริการตัวเก่าๆ อย่าง Google Maps หรือ Chrome เลย)

ซีอีโอ Sundar Pichai ขึ้นเวทีพร้อมกับย้ำว่าโลกกำลังเปลี่ยนผ่านจากยุค Mobile First มาเป็น AI First (เขาพูดเรื่องนี้มาตั้งแต่ปีที่แล้ว) พร้อมกับอธิบายผลงานด้าน AI ของกูเกิลในปัจจุบันว่ามีอะไรบ้าง

บทความนี้จะสรุปประเด็นและวิเคราะห์ผลงานด้าน AI ของกูเกิลว่าไปไกลแค่ไหน และเปรียบเทียบกับคู่แข่งแล้ว กูเกิลยืนอยู่ตรงไหนในโลกของ AI

Tags:
Node Thumbnail

เป็นทิศทางของโลกการประมวลผลที่เริ่มนำ GPU มาช่วยประมวลผลงานด้าน AI และ Deep Learning ซึ่งกำลังได้รับความนิยมมากขึ้นเรื่อยๆ ส่งผลให้บริการคลาวด์หลายตัวต้องเปิด instance ที่มี GPU รุ่นใหม่ๆ ให้ลูกค้าใช้งานกัน

ก่อนหน้านี้ Google Cloud Platform เพิ่งอัพเดต GPU โดยมี GPU รุ่นใหม่ๆ อย่าง NVIDIA Tesla P100 ที่ใช้สถาปัตยกรรม Pascal ให้เลือก

วันนี้ฝั่ง Microsoft Azure ก็ทำแบบเดียวกัน โดยมี GPU ให้เลือกใช้งานสองตัวคือ NVIDIA Tesla P100 และ Tesla P40 ซึ่งเป็น Pascal ทั้งคู่

Tags:
Node Thumbnail

คนที่ติดตามวงการ deep learning คงรู้จัก Caffe เฟรมเวิร์คสำหรับเทรน AI ให้เรียนรู้ด้วยเทคนิค deep learning

Caffe ถูกสร้างโดย Yangqing Jia อดีตนักวิจัยปริญญาเอกของมหาวิทยาลัย UC Berkeley ปัจจุบันมันเป็นซอฟต์แวร์โอเพนซอร์สที่ดูแลโดย Berkeley AI Research

ตัวของ Yangqing Jia ตอนนี้มีสถานะเป็นพนักงานของ Facebook (ก่อนหน้านี้เขาเคยทำงานกับกูเกิล และอยู่ในทีม TensorFlow ด้วย) สิ่งที่เกิดขึ้นคือ Jia พัฒนาเฟรมเวิร์คตัวใหม่ Caffe2 ที่ดีกว่าของเดิม

Tags:

นักวิจัยจาก Adobe และ Cornell University ได้ร่วมกันพัฒนาเทคโนโลยีด้านภาพถ่ายใหม่ คือการนำสไตล์ภาพหนึ่ง ไปใส่อีกภาพ คือจะมีภาพสองภาพ ภาพหนึ่งเป็นภาพหลัก และอีกภาพเป็นภาพอ้างอิง ภาพผลลัพธ์จะเป็นการนำโครงสร้างของภาพหลัก มาทำการตกแต่งด้วยสีและแสงในลักษณะเหมือนกับภาพอ้างอิง โดยจะดูเป็นธรรมชาติและไม่ทำให้โครงสร้างของภาพหลักเปลี่ยนแปลงไป

งานวิจัยนี้ ใช้วิธีการ deep learning จากแสงและสีจากภาพอ้างอิง จากนั้นก็จะนำแสงและสีในลักษณะเดียวกันไปใช้กับภาพหลัก ดังนั้นภาพที่ได้จึงดูเป็นธรรมชาติ โดยรายละเอียดของงานวิจัย สามารถอ่านได้จากที่นี่ ส่วนโค้ดสามารถดูได้จาก GitHub

Tags:
Node Thumbnail

กูเกิลเคยเปิดบริการ Cloud Vision API ลูกค้าสามารถส่งไฟล์ภาพขึ้นคลาวด์ แล้วให้ AI ของกูเกิลแยกแยะกลับมาให้ว่าในภาพมีวัตถุอะไรบ้าง

ปีนี้ระบบของกูเกิลพัฒนาไปอีกขั้น เพราะมันสามารถแยกแยะวัตถุในวิดีโอได้แล้ว ภายใต้ชื่อว่า Cloud Video Intelligence API

หลักการของ Cloud Video Intelligence API ก็เหมือนกันคือใช้เอนจินเรียนรู้ deep-learning ของตัวเอง TensorFlow แล้วให้ฝึกเรียนรู้จากวิดีโอบน YouTube ตอนนี้มันเก่งพอที่จะแยกแยะเนื้อหาในวิดีโอได้แล้ว จากภาพตัวอย่างที่กูเกิลนำมาโชว์ มันสามารถแยกแยะได้ว่าในวิดีโอมี "เสือ" และถ้าค้นด้วยคำว่า Tiger เราก็จะได้คำตอบกลับมาเป็นช่วงเวลาทั้งหมดในวิดีโอที่มีเสืออยู่ในภาพ

Tags:
Node Thumbnail

Google Translate ปรับปรุงฟีเจอร์การแปลเพิ่มเติม ใช้ deep learning เพิ่มความถูกต้องแม่นยำเวลาแปลทั้งประโยค แทนที่จะแปลแค่วลีมาประกอบกัน ก่อนหน้านี้อัพเดทเฉพาะ 8 ภาษาก่อนคือ อังกฤษ ฝรั่งเศส เยอรมัน สเปน โปรตุเกส จีน ญี่ปุ่น เกาหลี และตุรกี ล่าสุดเพิ่มมาอีกสามภาษาคือ ฮินดี รัสเซีย และเวียดนาม

ช่วงเดือนพฤศจิกายนปีที่แล้ว Google เปลี่ยนเอนจินการแปลใหม่ ขยายผลเทคนิค Neural Machine Translation ไปยังภาษาอื่นๆ ผลคือสามารถแปลทั้งประโยคได้ถูกต้อง และทำความเข้าใจได้มากขึ้นเมื่ออ่านรวมกันทั้งประโยค

ทาง Google ระบุว่าจะมีอัพเดทภาษาอื่นเพิ่มเติมภายใน 2-3 สัปดาห์นี้

Tags:
Node Thumbnail

Baidu Research รายงานความสำเร็จของโครงการ Deep Voice แปลงจากข้อความเป็นเสียง (text-to-speech - TTS) นอกจากความแม่นยำของเสียงที่ออกมาเป็นธรรมชาติแล้ว ระบบนี้ยังมีความเร็วสูงกว่าระบบก่อนๆ ทำให้ใช้เวลาไม่กี่วินาทีในการสังเคราะห์เสียง

Deep Voice ยังไม่ใช่ระบบแบบ end-to-end ที่ใช้เครือข่ายประสาทเทียมในการวิเคราะห์ทั้งหมด แต่ต้องการตัวแปลงข้อความเป็น phoneme เสียก่อน จากนั้นจึงฝึกสามระบบแยกจากกัน ได้แก่ ระบบสังเคราะห์เสียง (audio synthesis), ระบบทำนายระยะเวลาเสียง (duration prediction), และระบบทำนายความถี่พื้นฐาน (fundamental frequency prediction)

ตัวอย่างเสียงที่สังเคราะห์ได้มีให้ฟังในที่มา

Tags:

Deepgram บริษัทสร้างระบบวิเคราะห์ข้อมูลเสียงเพื่อธุรกิจโอเพนซอร์สซอฟต์แวร์ Kur สำหรับการสร้างเครือข่ายประสาทเทียมแบบ Deep Learning โดยไม่ต้องโค้ดแต่อาศัยการคอนฟิกไฟล์ YAML เท่านั้น

ทาง Deepgram ยังเตรียมสร้างเว็บ Kurhub สำหรับให้นักวิจัยและผู้สนใจมาแชร์โมเดลเครือข่ายประสาทเทียมที่ออกแบบไว้สำหรับงานต่างๆ

สำหรับผู้ที่ใช้งานหรือพัฒนาเครือข่ายประสาทเทียมเช่นนี้อยู่แล้ว สิ่งที่ Kur พิเศษกว่าคือมันมีชุดข้อมูลของ Deepgram สำหรับการฝึกระบบจดจำเสียงมาให้ในตัวด้วย โดยชุดข้อมูลเสียงมีจำนวน 10 ชั่วโมง แบ่งออกเป็นไฟล์ๆ ละ 10 วินาที การเทรนเครือข่ายตัวอย่างจะใช้เวลาประมาณหนึ่งวันเต็มบนชิปกราฟิก

Tags:
Node Thumbnail

ตั้งแต่เดือนเมษายน 2016 ที่ผ่านมา เมื่อเราอัพโหลดภาพขึ้นไปยัง Facebook ทางระบบจะวิเคราะห์และติด tag ให้กับภาพของเราแบบอัตโนมัติ โดยพิจารณาจาก “เนื้อหา” ของสิ่งที่อยู่ในภาพ ซึ่ง Facebook ใช้ระบบ deep learning ที่ชื่อว่า Deep ConvNet ซึ่งพัฒนาขึ้นมาโดยทีม FAIR ของ Facebook

แต่ผู้ใช้ทั่วไปกลับไม่รู้ว่า Deep ConvNet มองเห็นอะไรในภาพของเราบ้าง จึงมีคนทำ “Show Facebook Computer Vision Tags” เป็น Extension ฟรีสำหรับ Google Chrome โชว์ให้เราได้รู้ว่า Facebook เห็นอะไรและ tag อะไรในภาพของเรา ตรงมุมขวาบนของภาพ ซึ่ง tag เหล่านี้เราไม่สามารถมองเห็นได้จากการใช้งานตามปกติ

Pages